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Seed hemicelluloses tailor mucilage properties and salt tolerance
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¢ While Arabidopsis seed coat epidermal cells have become an excellent genetic system to study
the biosynthesis and structural roles of various cell wall polymers, the physiological function of
the secreted mucilaginous polysaccharides remains ambiguous. Seed mucilage is shaped by two
distinct classes of highly substituted hemicelluloses along with cellulose and structural proteins,
but their interplay has not been explored.

¢ We deciphered the functions of four distinct classes of cell wall polymers by generating a series
of double mutants with defects in heteromannan, xylan, cellulose, or the arabinogalactan
protein SALT-OVERLY SENSITIVE 5 (SOS5), and evaluating their impact on mucilage
architecture and seed germination during salt stress.

e Wediscovered that muci10 seeds, lacking heteromannan branches, had elevated tolerance to
salt stress, while heteromannan elongation mutants exhibited reduced germination in calcium
chloride (CaCl,). By contrast, xylan made by MUCILAGE-RELATED21 (MUCI21) was found to
be required for the adherence of mucilage pectin to microfibrils made by CELLULOSE
SYNTHASE5 (CESA5) as well as to a SOS5-mediated network.

e Our results indicate that the substitution of xylan and glucomannan in seeds can fine-tune
mucilage adherence and salt tolerance, respectively. The study of germinating seeds can thus
provide insights into the synthesis, modification and function of complex glycans.
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et al., 2019). The seed coat epidermis secretes large amounts of

Introduction polysaccharides that rapidly swell upon hydration to release

Cellulose microfibrils are deposited around plant cells and
enmeshed in a complex matrix of hemicelluloses, pectin, and, to
alesser extent, structural proteins. The roles of specific classes of cell
wall polymers have been difficult to study even in model organisms.
For instance, Arabidopsis thaliana has nine CELLULOSE
SYNTHASE-LIKE A (CSLA) genes that are at least putatively
involved in the synthesis of heteromannan (HM), a class of
hemicellulose mainly built of B-1,4-linked mannosyl units. While
HM polymers could store carbon to feed growing seedlings or
directly control cell wall structure (Schroder et al, 2009), their
physiological roles in Arabidopsis are poorly understood. Genetic
disruption of CSLA7 is embryo-lethal, but esla2 csla3 csla9 triple
mutant stems had no phenotypic changes despite lacking detectable
HM (Goubet ezal., 2009). Significant insights into the biosynthesis
and functions of various cell wall components, including HM, have
been gained using the Arabidopsis seed coat as a genetic model (Sola
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nonadherent mucilage as well as an adherent capsule. Unbranched
pectin is the dominant mucilage component, but the adherent
capsule also contains hemicellulosic polymers typical of secondary
walls (Voiniciuc et al, 2015c), which are deposited after cells
expand.

In the past decade, several classes of carbohydrate-active enzymes
have been found to influence mucilage content and properties
(Griffiths & North, 2017; Sola e al., 2019). At least three genes are
required to maintain pectin adherence to the seed surface (Fig. 1a):
CELLULOSE  SYNTHASE  (CESA5), SALT-OVERLY
SENSITIVE5  (80S5) and  MUCILAGE-RELATED21/
MUCILAGE-MODIFIED5 (MUCI21/MUMS5). CESA5 is a
member of the cellulose synthesis complex (Harpaz-Saad ez al,
2011; Mendu et al., 2011; Sullivan et al, 2011; Griffiths e al.,
2015), while the SOS5 arabinogalactan protein could be part of a
mucilage proteo-glycan or a kinase signalling pathway (Harpaz-
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Saad etal., 2011; Griffiths et al., 2014; Basu ez al., 2016). Although
its predicted xylosyltransferase activity remains to be confirmed
in vitro (Voiniciuc et al., 2015a; Zhong et al., 2018), MUCI21 is
required to substitute xylan with xylose branches (Voiniciuc ez af.,
2015a) that facilitate pectin—cellulose interactions (Ralet er 4/,
2016). Galactoglucomannan, another branched hemicellulose in
Arabidopsis mucilage, is elongated by CSLA enzymes and
substituted by MANNAN o-GALACTOSYLTRANSFERASE1/
MUCILAGE-RELATED10 (MAGT1/MUCI10; Yu et al., 2014,
2018; Voiniciuc er al, 2015b). Unlike xylan, branched HM
maintains cellulose deposition and pectin density without appear-
ing to influence mucilage adherence (Fig. 1a).

Biochemical and histological analyses of double mutants have
clarified how SOS5 and cellulosic ray-like structures provide two
distinct mechanisms to anchor pectin to seeds (Griffiths et 4/,
2014,2016; Ben-Tov eral., 2018). The contrasting roles of the two
hemicelluloses on mucilage properties have yet to be evaluated in
detail. The physiological roles of Arabidopsis seed mucilage are still
ambiguous, even though angiosperm seed coats have been involved
in seed dormancy, dispersal and germination (Western, 2012;
North er al, 2014). In contrast to the Columbia wild type,
Arabidopsis varieties with impaired mucilage release (Saez-Aguayo
et al., 2014) or adherence (Voiniciuc et 4l., 2015a) have elevated
buoyancy and could be dispersed on water. Seed germination is
essential for plant establishment and is extremely sensitive to salt
stress. In this study, we therefore explored how genes affecting
different wall polymers modulate mucilage properties, seed
germination and early growth under salt stress (Fig. 1a).

Materials and Methods

Plant materials

Mutations were genotyped using primers listed in Supporting
Information Table S1 and Touch-and-Go PCR (Berendzen et 4/,
2005). The double mutants generated in this study are available
from the Nottingham Arabidopsis Stock Centre (http://arabid
opsis.info/; stocks N2110012 to N2110016). Plants were grown in
climate-controlled chambers as previously described (Voiniciuc
et al., 2015b). The germination assays were performed using seeds
produced by plants grown individually in 8 cm round pots at 100—
120 pmol m™*s™" light, 22°C and ¢ 60% relative humidity.
Flowering plants were staked and mature, dry seeds (c. 10 wk) were
harvested, separated from the chaff and stored in separate paper
bags (one per plant) in a temperature-controlled laboratory

(c. 23°C, 40-50% humidity).

Microscopic analyses

Seeds were stained with 0.01% ruthenium red (RR) in 24-well
plates and quantified in Fi1 (https://fiji.sc/; Schindelin ez al., 2012)
using established protocols (Voiniciuc ez al., 2015b). For staining
without shaking, seeds were imbibed in 300 pul of 0.01% RR
solution for 15 min. Images were acquired with two stereomicro-
scope-camera setups: MZ12 with DFC 295, or M165FC with
MC170 HD (all from Leica, Wetzlar, Germany). Mucilage
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immunolabelling with CCRC-M139 (Carbosource, Complex
Carbohydrate Research Centre) and counter-staining with S4B
(Direct Red 23; Sigma Aldrich, St Louis, MO, USA) was
performed using a published protocol and Leica TCS SP8 confocal
setup (Voiniciuc, 2017). Germinated seeds were stained with
calcofluor white and propidium iodide (0.05%, w/v, for both dyes)
for 10 min, rinsed well with water, and imaged on a Zeiss
Imager.Z2 with a x 10 Plan-Fluar (NA 0.30), Axiocam 506, and
DAPI/Texas Red filters.

Biochemical analyses

Total mucilage was extracted with a ball mill, hydrolysed, and
quantified via high-performance anion exchange chromatogra-
phy with pulsed amperometric detection (HPAEC-PAD) as
previously described (Voiniciuc & Giinl, 2016). The quantifi-
cation of mucilage detachment via HPAEC-PAD has also been
described in detail (Voiniciuc, 2016). HPAEC-PAD of mucilage
was conducted on a Dionex system equipped with CarboPac
PA20 columns (Voiniciuc & Giinl, 2016). For alcohol-insoluble
residue (AIR) isolation, all material (72h post-stratification)
from four biological replicates was pooled, finely ground and
sequentially washed with 70% ethanol, chloroform/methanol
(1:1, v/v) and acetone. Monosaccharide content of germinated
seed AIR after 2M trifluoroacetic acid hydrolysis was analysed
on a Metrohm 940 Professional IC Vario (Voiniciuc et al,
2019), equipped with Metrosep Carb 2-250/4.0 guard and
analytical columns.

Seed germination assay

All germination assays were performed in sterile 24-well culture
plates (734-2779; VWR International, Radnor, PA, USA), using
500 pl of the specified solution and dry seeds (typically 20, but up
to ¢. 100 worked) from a single plant per well. The four corners had
only water and the plates were sealed with lids and 3M micropore
tape to reduce desiccation. Replicates from high-quality seed lots
were distributed to avoid positional bias, and at least three
biological replicates per genotype showed consistent results. Seeds
were hydrated in 500 pl of distilled water, 150 mM calcium
chloride (CaCl,) or 150 mM sodium chloride (NaCl) directly in
the plate, or first de-mucilaged via ball mill extraction in water
(Voiniciuc & Giinl, 2016) before rinsing and being transferred in
the final solvent (500 pl) to the plates. Floating seeds were counted
as the number remaining in the centre of each well, atop the
solution. Plates were stratified for 66 h (dark, 4°C), transferred to a
phytochamber (22°C, 100 pmol m™*s™ " constant light), and then
imaged every 24 h with a Leica M165FC stereomicroscope. Seeds
were defined as germinated if radicle length was >70 pm, when
quantified in Fj1 (line tool).

To compare ionic and osmotic effects, germination assays were
performed in 150 mM CaCl, or magnesium chloride (MgCl,)
salts, 450 mM sorbitol, and 61 mM polyethylene glycol (PEG)
4000, all with an equal osmotic pressure (1.11 MPa) based on the
van’t Hoff formula and experimental data (Money, 1989). Radicle
protrusion vs elongation effects were tested by switching water and
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Fig. 1 Impact of different players on mucilage properties. (a) Schematic of
previously reported functions of four genes on Arabidopsis seed mucilage
properties. Geneticinteractions between these playersand their physiological
roles remain unknown. (b) Wild-type (WT) and mutant seeds were gently
mixed in water and ruthenium red (RR) was used to stain adherent pectin
(pink).Bars, 0.6 mm. (c) Box plotsof projected seed and mucilage areas of four
biological replicates (each with c. 17 seeds) per genotype. Boxes show the 25—
75% quartiles, the median value (inner horizontal line), and whiskers
extending to the largest/smallest values. Letters denote significant
differences (one-way ANOVA with Tukey test, P <0.01). (d) Transcriptional
changes (asterisks; P <0.001) during stratification and germination relative
(loga ratio) to dry seeds (0 h), profiled in GENEVESTIGATOR. (e) Schematic of
HM structure in WT and muci70 mutant, which is expected to be more
accessible to cleavage or re-modelling by p-1,4-mannanases (MAN).
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150 mM CaCl, at 24 h post-stratification following three sequen-
tial 450 pl solvent exchanges.

Figures and statistical analysis

Micrographs were processed uniformly in Fyr. Numerical data
were plotted as bar graphs in Microsoft EXCEL 365 or as box/
violin/jitter plots in the PasT 4 stadstics software package
(hteps://folk.uio.no/ohammer/past/; Hammer e al, 2001).
Panels were assembled in INkscape (https://inkscape.org/).
ATHI1 microarray expression, including GSE20223 dataset
(Narsai et al, 2011), was visualized in GENEVESTIGATOR
Professional (https://genevestigator.com/). Two-samples and
multiple samples statistics were performed in EXcCEL and Past
4, respectively. Carbohydrates were drawn according to the
Symbol Nomenclature for Glycans (SNFG).

Results and Discussion

Mucilage adherence requires multiple wall polymers, except
HM

To dissect the roles of the four genes listed in Fig. 1(a), we generated a
series of double mutants with defects in HM, xylan, cellulose or an
AGP (SOS5). We crossed the mucil0-1(Voiniciuc et al., 2015b) and
muci21-1 (Voiniciuc et al., 2015a) hemicellulose mutants to each
other, as well as to cesa5-1 (Mendu ez al.,, 2011) and sos5-2 (Harpaz-
Saad er al,, 2011). After shaking and RR staining, the seeds of all
single and double mutant combinations had wild-type seed area but
were surrounded by smaller mucilage capsules (Fig. 1b,c). MUCI21,
CESAS or SOS5 were epistatic to MUCII0 in terms of adherent
mucilage size. While all mutants produced wild-type percentages of
rhamnoseand galacturonicacid in total mucilage extracts (Table S2),
significant reductions in minor sugars were associated with mucil0
(galactose and mannose) and muci21 (xylose) mutations (Fig. 2a).
Consistent with previous results (Griffiths ezal., 2014), cesa5and sos5
mutations did not alter matrix polysaccharide composition. The
mucilO muci2] double mutant phenocopied the biochemical
deficiencies of the respective single mutants, indicating that xylan
and HM substitution can be uncoupled in the seed coat.
Sequential mucilage extractions (Fig. 2b; Table S3), as well as
direct hydration in RR solution (Fig. 2¢), showed that more pectin
detached from seeds containing muci21, cesa5and/or sos5 mutations
compared to wild-type and mucil0. Xylan detachment increased
proportional to that of pectin in mutants lacking CESA5 and/or
SOS5 (Fig. 2b; Table S3), consistent with covalent linkages between
these polymers (Ralet ez a4l, 2016; Voiniciuc er al, 2018).
Unbranched xylan epitopes, labelled by the CCRC-M139 mono-
clonal antibody (Ruprecht ez al., 2017), closely surrounded muci21
and cesa5 seeds but were further from the surface of sos5 and other
genotypes (Fig. Sla,b), proportional to the RR-stained adherent
capsule size (Fig. 1b,c). Each mutation also had distinct effects on
S4B staining, which primarily detects cellulose (Anderson ez al,
2010), and all the double mutants seeds lacked the ray-like structures
that were observed around the wild type (Fig. 2d). Among the single
mutants, only muci2l and cesa5 displayed clear ray-like structures
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(Fig. 2d), while sos5 only had more diffuse cellulose as previously
shown (Fig. 2d; Griffiths e 4/, 2014). The impact of the different
mutant combinations on cellulose architecture was also supported by
crystalline polymer birefringence (Fig. S1c). In short, CESAS5, SOS5,
or MUCI21 were epistatic to MUCII0for pectin adherence (Fig. 2b,
©), via partially overlapping mechanisms, and the loss of any two
players severely impaired cellulose structure. This double mutant
analysis highlights the genetic complexity of cell wall biosynthesis in
the seed coat and reveals how extracellular polysaccharide organi-
zation can be dramatically reshaped when more than one structural
component is modified.

The elongation and substitution of HM modulate salt
tolerance

The newly generated mutant collection affecting multiple classes of
wall polymers enabled us to investigate the physiological conse-
quences of altering the mucilage structure. We established a novel
seed germination and salt stress assay using aqueous solutions in 24-
well plates. Nearly all wild-type and mutant seeds imbibed in water
germinated within 24 h post-stratification (Fig. 3a). However,
when placed in 150 mM CaCl,, few wild-type seeds germinated
even after 48 h of exposure to constant light. We inidally
hypothesized that mucilage-defective mutants might be more
susceptible to salt stress, but unexpectedly found that muci10 and
mucil0 muci21 seeds had over five-fold higher germination rate at
this stage (Fig. 3a). The other mutant combinations germinated
like the wild type at all time points. Only mucil0 and mucil0
muci21 had significantly longer radicles at 72 h in 150 mM CaCl,
(Fig. 3b,d), even though most mutants had around a two-fold
higher flotation rate compared to the wild type (Fig. 3c). The
enhanced germination rate and radicle growth of mucil0 in
150 mM CaCl, were replicated in multiple assays, including up to
100 seeds per well and independent growth batches (Fig. 3e—g).
To evaluate the basis of the observed salt tolerance, we assayed
the effects of the muci10 mutation in additional stress conditions.
The use of 150 mM NaCl also reduced the rate of seed germination,
but radicles that protruded from NaCl-treated seeds failed to
further elongate compared to the CaCl, treatment (Fig. S2).
Nevertheless, mucil0and mucil0 muci2l germinated faster than
wild type in both salt treatments (Figs 3a, S3a). All seeds sunk in
water within the stratification period (Fig. S3b), but a significant
proportion of certain seeds (only muci2l in NaCl, and most
mutants in CaCl,) continued to float in the salt solutions
(Fig. S3¢c). When subjected to ionic (150 mM CaCl, or MgCl,)
or purely osmotic stress (PEG 4000 or sorbitol) of equivalent
pressure, the germination rate of mucil0 seeds was significantly
higher than wild type only in calcium salt stress (Fig. 4a). Once
protruded from the seed coat, mucil0 radicles elongated signifi-
cantly faster than wild type in both CaCl, and sorbitol treatments
(Fig. 4b; despite the three-fold difference in sample sizes), while the
magnesium and PEG solutions showed higher toxicity to both
genotypes. Overall, unbranched HM mutant seeds primarily
tolerated high amounts of Ca®" cations, which can cross-link
unesterified pectin (Voiniciuc ez al, 2015¢; Sola et al, 2019).
Switching water and 150 mM CaCl, solutions at 24h post-
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stratification demonstrated that muciI0 enhances growth in
calcium stress during the emergence of the radicle emergence as
well as its subsequent elongation (Fig. S3d,e).

We then investigated how mucilage removal impacts salt
tolerance, by extracting seed coat polysaccharides using a ball mill
before stratification. With or without mucilage, CaCl,-treated
mucil 0 seeds germinated faster than wild type (Fig. 4c). Mucilage
B-glucans continue to encapsulate wild-type seeds at 72 h post-
stratification (Fig. 4d) but were absent from de-mucilaged wild-
type seeds and HM-deficient mucil0 seeds (regardless of treat-
ment). Despite not altering the germination rates of after-ripened
seeds, the mucilage extraction significantly reduced the radicle
length of each genotype compared to the intact controls (Fig. 4e).
To evaluate the roles of different enzymes involved in HM
biosynthesis, we then compared the germination rates of mucil0
and ¢sla2-3 (Fig. S4), which have similar mucilage defects (Voini-
ciuc et al., 2015b). CaCl,-treated cs/a2 resembled the wild type, but
the mannose content of ¢s/a2 germinated seeds was reduced by
only 7% (#test, P<0.05) in either water or CaCl, (Fig. S4¢;
Table $4), suggesting that additional CSLAs elongate HM in the
same tissues. Using microarray data, we found that the transcrip-
tion of CSLA2, CSLA3, CSLA9 along with CSLA7 and CSLAI1I
(to a lesser extent) increased during germination relative to dry
seeds (Fig. S4d). We found that the csla2-1 csla3-2 csla9-1 triple
mutant (abbreviated as ¢s/2239), having glucomannan-deficient
stems (Goubet ez al., 2009), had significantly lower germination
(Fig. 4f) and smaller radicles (Fig. 4g) in the CaCl, treatment
compared to the wild type. The ¢s/2239 triple mutant reduced the
mannan content of germinated seeds by one-third (Fig. 4h;
Table S5), indicating that even a partial reduction of HM
elongation significantly impaired growth under salt stress. Since a
csla7 mutant was defective in embryogenesis (Goubet ez al., 2003,
2009), we expect that the full disruption of HM elongation in
seeds would be lethal.

In summary, we found that the biosynthesis of two substituted
hemicelluloses in the seed coat epidermis can be uncoupled and that
HM and xylan have largely independent functions. HM substi-
tuted by MUCII0 is responsible for controlling pectin density,
supporting cellulose synthesis and modulating seed tolerance to salt
stress. By contrast, MUCI21, CESA5 and SOSS5 are all epistatic to
MUCII0 for pectin adherence to the seed surface, via partially
overlapping means (Fig. 1a). Since muci2l, cesa5 and sos5 had
additive effects (Figs 1, 2, S1; cesa5 sos5 from Griffiths ez al., 2014,
2016), Arabidopsis seed mucilage structure must be controlled by a
genetic network that is more complex than its carbohydrate
composition suggests. For instance, the disruption of HM
biosynthesis (Fig. 2; Yu er al., 2014; Voiniciuc ez al., 2015b) or
of cortical microtubule organization (Yang ez al., 2019) reduces the
distribution of cellulose but not mucilage adherence. Our analysis
of mucil0and cesa5 single and double mutants indicates that the
cellulosic microfibrils essential for pectin attachment might be
closer to the seed surface than previously thought (see remnants of
rays in Fig. 2d and Fig. S1c).

In addition to gaining insight into the genetic regulation of
mucilage properties, we discovered that HM structure modulates
seed germination in CaCl, solutions, and to a lesser extent in
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Fig.2 Arabidopsis seed mucilage polysaccharide composition and distribution. (a) The relative abundance of hemicellulose-derived monosaccharides in total
mucilage. (b) The nonadherent proportion of mucilage pectin (sum of rhamnose and galacturonic acid) and xylan (built of xylose residues). Data show
mean + SD of four biological replicates, except only two for sos5 in (b), and letters denote significant differences (one-way ANOVA with Tukey test, P <0.05).
(c) Hydration of seeds in ruthenium red (RR) solution, without shaking. Blue arrows indicate nonadherent mucilage. (d) S4B staining of cellulose, coloured using
Orange Hot LUT in Fui (see calibration bar in muci70 subpanel). Blue triangles mark volcano-shaped columellae on the seed surface, and the dashed lines

indicate cellulosic rays (labelled R). Bars: 1 mm (c); 50 um (d).

other ionic/osmotic conditions. Ca®" ions can cross-link unes-
terified mucilage pectin and all the generated double mutants
had elevated flotation compared to the wild type. However, only
the mucil0 mutation promoted germination in CaCl,, while the
¢sla239 triple mutant reduced it. Consistent with these effects,
MUCII0 and other HM biosynthetic genes were upregulated
during seed germination (Figs 1d, S4d), while MUCI21 was not.
Since CESA5 was also expressed in germinating seeds (Fig. 1d)
and sos5 roots are overly sensitive to salt (no ATH1 microarray
probe; Basu er al., 2016), mucil0 cesa5 and mucil0 sos5 double
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mutants may offset the benefit of mucil0 (Fig. 3). The presence
of unbranched HM could directly alter the ability of cell walls to
expand under salt stress. HM deficiencies also modify pectin
properties, by lowering the degree of methylesterification (Yu
et al., 2014), so mucil0 mucilage might be able to sequester
calcium ions that would otherwise inhibit the expansion of inner
cell layers.

In addition, unsubstituted HM in mucil Oshould be more readily
hydrolysed or transglycosylated by [-1,4-mannanases (MAN;
Schroder ez al, 2009), which are expressed during Arabidopsis seed

© 2020 The Authors
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Fig. 3 Germination of seedsin water and CaCl,. (a) Germination of stratified Arabidopsis seeds. Box plots show germination of single and double mutants (four
plants, c. 20 seeds each, per genotype) treated with 150 mM CacCl,. Boxes show the 25-75% quartiles, the median value (inner horizontal line), and whiskers
extending to the largest/smallest values. In water, nearly all seeds germinated within 24 h. (b—d) Further analyses of seeds from (a) in the CaCl, treatment at
72 h. (b) Representative images of germinated seeds, with dashed lines indicating radicle length. (c) Box plots of seed flotation. (d) Violin plots (with
superimposed box plots) of the radicle lengths, showing the density of values from smallest to largest. (e-g) Elevated muci70 tolerance to 150 mM CacCl, stress
compared to the wild type (WT) was validated using larger quantities of seeds from two independent growth batches. (e) Germination rates at 48 h (three
plants, with c. 100 seeds each) per genotype and seed lot. (f) Images of wells from the first seed lot at 72 h. (g) Radicle growth in CaCl, in two seed lots. All x-axes
are labelled using the legend in (a), and letters mark significant changes (one-way ANOVA with Tukey test, P<0.05). Bars: 0.5 mm (b); 2 mm (f).

imbibition (Fig. 1d,e). Mutations in MAN5, MAN7, and particu- tolerance to 150 mM NaCl (He et 2/, 2017). Since the world faces

larly MANG are known to reduce germination in favourable  rising sea levels and the expansion of saline environments, engineer-
conditions (Iglesias-Fernandez et al, 2011). We hypothesize that  ing salt tolerance remains a major challenge in crop production.

MAN enzymes might directly alter cell wall expansion, mobilize In conclusion, we have deciphered the contrasting roles of two
energy reserves and/or release an HM-derived molecular signal to  classes of hemicelluloses in establishing seed mucilage properties
enhance salt tolerance. Only water-treated seedlings accumulated ~ and demonstrated new roles for HM elongation and substitution in
large amounts of glucose (Tables S4, S5), likely derived from starch. radicle emergence as well as elongation during calcium salt stress.
Seeds germinating in salt stress might need to mobilize carbon =~ The multiwell cultivation system established in this study can be
reserves from HM and potentially other mucilage polymers to  used to explore the physiological consequences of additional cell

sustain growth (Fig. 4). HM structure varies extensively in natural ~ wall modifications. The overlapping expression profiles of multiple
Arabidopsis populations (Voiniciuc ez al, 2016), so it might already =~ HM-related genes (Figs 1d, S4d) highlights the need to investigate

modulate how seeds disperse, germinate and tolerate brackish waters  the specificity of these players on the cellular level in future studies.
containing hostile levels of Ca?" and/or Na". Consistent with this Future studies using 77 vizro (Liepman et al., 2005; Yu ez al., 2018)
hypothesis, the constitutive expression of an enzyme involved in  or synthetic biology (Voiniciuc ez al, 2019) approaches are
producing GDP-mannose, the sugar donor for HM elongation,  required to elucidate the glycan structures yielded by different

elevated the mannose content of Arabidopsis seedlings and their ~ enzyme isoforms, or combinations thereof.

© 2020 The Authors New Phytologist (2021) 229: 1946-1954
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Fig. 4 Dissecting how heteromannan (HM) structure impacts germination in adverse conditions. (a) Arabidopsis germination rates at 72 h post-stratification in
150 mM CaCl,, MgCl,or two osmotica (PEG 4000 and sorbitol), of equal osmotic pressure. Boxes show the 25-75% quartiles, the median value (inner
horizontal line), and whiskers extending to the largest/smallest values. (b) Jitter plots showing radicle lengths at 72 h, from the seeds that germinated in (a). (c)
Germination of seeds with (+) or without (—; mill-extracted) mucilage. (d) Dual cell wall staining of seeds germinated at 72 hin CaCl, Allmuci’10’seeds as well as
mill-extracted wild-type (WT) seeds lack mucilage B-glucans. Bars, 200 um. (e) Violin plots (with superimposed box plots) of the radicle lengths, showing the
density of values from smallest to largest, of seeds from (c) at 72 h in CaCl,. (f) Germination of WT and cs/a239 triple mutant. (g) Radicle length of csla239 is
reduced compared to WT. Data is shown from three biological replicates in (a) and (b), or four biological replicates in (c) to (g). (h) Mannose content in
germinated seeds shown as mean =+ SD of two technical replicates. In all panels, significant changes are marked by different letters (one-way ANOVA with
Tukey test, P <0.05) or asterisks (Student's t-test, P <0.05; compared to the corresponding WT).
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Fig. S2 Morphology of seeds in CaCl, and NaCl treatments.
Fig. 83 Seed germination and flotation rates in water and salt stress.

Fig. §4 Roles of heteromannan-related genes during seed germi-
nation.

Table S1 Insertional mutants and genotyping primers used in this
study.
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from seeds.

Table S3 Detachment of mucilage components after gentle
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seeds.
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