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Abstract

Tailoring the structure of cellulose, hemicellulose or pectin in
plant cell walls can modulate growth, disease resistance,
biomass yield and other important agronomic traits. Recent
advances in the biosynthesis of microfibrils and matrix poly-
saccharides force us to re-examine old assumptions about the
assembly and functions of cell wall components. The engi-
neering of living or hybrid materials in microorganisms could
be adapted to plant biopolymers or to inspire the development
of new plant-based composites. High-throughput cellular fac-
tories and synthetic biology toolkits could unveil the biological
roles and biotechnological potential of the large, unexplored
space of carbohydrate-active enzymes. Increasing automation
and enhanced carbohydrate detection methods are unlocking
new routes to design plant glycans for a sustainable
bioeconomy.
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Introduction
Complex glycans (from the Greek ‘glyko’ for ‘sweet’)
govern many aspects of biology: from controlling the
growth of plant cells to post-translationally modifying
proteins in eukaryotes. Polysaccharides are the most
abundant components of the plant cell wall, a versatile
exoskeleton that shapes development, morphology, and
environmental responses. In addition to cellulose, the

plant extracellular matrix can contain multiple hemi-
celluloses (b-1,4-linked xylans, mannans, and
www.sciencedirect.com
xyloglucans, plus mixed-linkage glucans containing
both b-1,4 and b-1,3-linkages) and pectin. The
biosynthesis and functions of cellulose, hemicelluloses
and pectin have been recently reviewed [1], but these
biopolymers still have untapped potential. Cell wall
polysaccharides represent the main sink for carbon
captured from the atmospheric CO2 via photosyn-
thesis, and they can be broken down into various oli-
gosaccharides and monosaccharides (Figure 1). While
cell walls provide a beneficial barrier against (a)biotic
stresses, their limited porosity and recalcitrance to
degradation present obstacles for some biotechnolog-

ical applications, such as the conversion of lignocellu-
losic biomass into bioenergy [2]. Increasing cell wall
hexose sugar content can boost saccharification, as
evidenced by the stacking of multiple genes to syn-
thesize pectic galactan in Arabidopsis thaliana [3].
However, a variety of purpose-built cell walls (Figure 1)
are needed to modulate agronomic traits and for
advanced bioproducts. In this review, I highlight recent
advances, biological questions, and emerging opportu-
nities to build designer plant glycans with tailored
functions or new-to-nature properties.
Recent advances in plant cell wall biology
An updated model on how extensible cell walls are built
was proposed in 2022 [4], with interactions among cel-
lulose microfibrils being most important for growth

mechanics. In contrast to cellulose, coarse-grained mo-
lecular dynamics simulations found that matrix poly-
saccharides (xyloglucan and pectin) did not have a major
impact on the biomechanical properties of epidermal
cell walls [5]. Consistent with this model, a quintuple
cellulose synthase-like mutant with no detectable
xyloglucan displayed relatively normal growth [6].
However, a new publication shows a role for b-galacto-
glucomannan in elongating tissues lacking xyloglucan
[7] since growth was further reduced by disrupting the
biosynthesis of both polymers. The deposition of cel-

lulose microfibrils in certain cell walls can also be
influenced by the intracellular biosynthesis of pectin [8]
and certain hemicelluloses [9]. In addition, the move-
ment of cellulose synthases at the plasma membrane is
coordinated by recently discovered cytosolic
microtubule-related proteins in Arabidopsis [10],
including the IQ67-domain (IQD) family [11] that was
previously associated with cell wall biomass properties
in Populus trees [12]. These findings signal the need to
re-examine old assumptions and address gaps in our
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Figure 1

Conceptual model for tailor-made plant polysaccharides. Glycosyl residues (via activated nucleotide sugars; not shown) can be incorporated into cell wall
polysaccharides by a large suite of glycosyltransferases and additional proteins. A variety of hydrolytic enzymes can work in synchrony to degrade
carbohydrate polymers into oligosaccharides and even monosaccharides. Genetic engineering efforts could funnel glycans into extracellular structures
that modulate agronomic traits (e.g. plant stature and biomass yields), carbon sequestration, (a) biotic resistance, and the production of various bio-
products. The diversity of cell wall structures displayed symbolizes that purpose-built cell walls are needed for each application, such as bioencapsulated
drugs and programmable biomaterials. Abbreviations for the most common glycosyl residues in plant cell walls: Glc, Glucose; Man, Mannose; Gal,
Galactose; Ara, Arabinose; Xyl, Xylose; Fuc, Fucose; Rha, Rhamnose, GalA, Galacturonic Acid; GlcA, Glucuronic Acid.
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Plant Cell Wall Bioengineering Voiniciuc 3
knowledge of cell wall assembly, such as the roles of
xyloglucans and mannans [4,6,7,13], and the supporting
players for cellulose deposition [11].

All classes of plant cell wall polymers have been
subjected to cell wall genetic engineering efforts in the
last two decades, with lignin and cellulose (the domi-
nant components of lignocellulosic biomass in trees and

bioenergy grasses) representing the primary targets for
gene overexpression, knockout or knock-down studies
Figure 2

Carbohydrate-active enzymes and binding modules in Arabidopsis thaliana. A
protein family. Glycan symbols indicate carbohydrates associated with charac
extracted from the CAZy database (http://www.cazy.org/) and NC indicates no
(PL), Carbohydrate Esterases (CE), and Auxiliary Activities (AA), such as lyti
catalytic domains that confer binding specificities to carbohydrate-active enzy
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(historically via RNA interference, RNAi). While an
overall reduction in lignin content compromises plant
biomass yield [14], the incorporation for more cleavable
linkages or high-value monomers in cell walls can lead to
a lignin-first biorefinery that initially makes use of aro-
matic products [15]. In contrast to the relatively well-
defined steps for lignin engineering, the biological
roles and biotechnological potential of most plant

glycosyltransferases that have been cloned [16] in
Arabidopsis (Figure 2) remain unclear. There is also a
ll the Y-axes indicate the number of members, and the X-axes denote the
terized cell wall-related members of a particular family. The data was
n-classified members. Additional activities include Polysaccharide Lyases
c monooxygenases. Carbohydrate-binding modules (CBMs) are non-
mes. PMEs denote pectin methylesterases.
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4 Plant Biotechnology
new appreciation of the complex coordination of many
carbohydrate-active enzymes and their products that
must occur at the subcellular level [10]. Recent ad-
vances in this area include biosynthetic insights on
b-mannans [7,17,18], xylan-based nanocompartments
[19], as well as the elongation of homogalacturonan and
rhamnogalacturonan I pectic domains [20e22].

Another interesting discovery of the last two years is that
many A. thaliana mutants with altered cell wall poly-
saccharide composition have enhanced immune re-
sponses to different types of pathogens [23]. Plant
glycans could be applied or bioengineered to confer dis-
ease resistance while minimizing developmental defects.
Apoplastic pectin can be modified by a variety of hydro-
lytic enzymes, including recently identified copper-
dependent lytic polysaccharide monooxygenases in the
oomycete Phytophthora infestans [24], a devastating path-
ogen of potato and tomato crops. Cell wall damage can

also activate transcription factors that stimulate healing
and regeneration [25]. Interestingly, grafting compati-
bility in several species is facilitated by putative b-1,4-
glucanases [26], whose secretion has also been linked
to host-parasite tissue adhesion [27]. Therefore,
carbohydrate-active enzymes that bind and cleave
different polysaccharides could be targeted to plant
protection, to improve grafting efficiency, and/or to
anchor microbes with desirable functions to plant tissues.

For the food industry, polysaccharides found in seed

mucilage are in-demand as hydrocolloids with valuable
rheological properties or as beneficial fibers for the
treatment of lifestyle diseases such as type-II diabetes
[28]. In Arabidopsis, the content of pectin and mucilage
properties can now be precisely modified by expressing
glycosyl hydrolases using seed coat-specific promoters
[29]. Besides seeds, mucilaginous glycans are also found
on the surface of other plant tissues such as maize aerial
roots, where they are associated with the attraction or
maintenance of nitrogen-fixing bacteria [30]. Therefore,
tailoring the content and composition of secreted poly-
saccharides in specific tissues could help to engineering

beneficial plant microbiomes for non-legume plants,
while minimizing the unwanted attention of agricultural
pests. For instance, galactosyl residues in flaxseed
mucilage attract root-knot nematodes parasites that
feed on host plants [31].
Engineering plant-based living materials
Engineered living materials can be designed using syn-
thetic biology [32], and plant cell walls could be the
renewable fibers or hydrogels for many of these applica-
tions, including 3D printing. In a recent study inspired by
the microbial community used to ferment kombucha, the
cellulose produced by Komagataeibacter rhaeticus bacteria
was coated with programmable functions via co-culture
with genetically engineered Saccharomyces cerevisiae yeast
Current Opinion in Plant Biology xxxx, xxx:xxx
strains secreting cellulose-binding recombinant proteins
[33]. Since carbohydrate-binding modules (CBMs) are
available for many plant polysaccharides [34], protein-
encoded functions such as biosensors could also be
added to plant carbohydrate polymers. Alternatively,
functionalized groups could be incorporated during
polysaccharide elongation as recently shown for the
in vitro synthesis of xylan microparticles [35]. Plant

photosynthesis has already been exploited to strengthen
and heal 3D-printed structures [36], so cells capable of
secreting polysaccharides could be added to produce
hybrid materials. While some steps for plant matrix
polysaccharide biosynthesis remain to be elucidated, the
sheer diversity of carbohydrates found in nature indicates
that a wealth of materials can be biomanufactured and
likely repurposed. Synthetic biology can even benefit the
production of existing plant fibers (e.g. neofunctionalized
cotton) in conventional farming, or could be applied to
create dwarf plant varieties or efficient cell lines that

produce high-value glycans in indoor environments such
as vertical farming (which could reduce the high water
and pesticide use that are typically required in the field).

Since plant polysaccharides are already widely
consumed and evolved to protect sensitive biological
cargo, they could provide a low-cost solution for protein
drug encapsulation [37]. Bioencapsulated drugs are
inexpensive to manufacture in edible plants, and wild-
type plant cell walls already protect recombinant pro-
teins against degradation [37]. Furthermore, plant seeds

or freeze-dried leaves can be stable at ambient condi-
tions for more than a year, bypassing the typical need for
cold storage and distribution. An immunoglobulin A-like
antibody produced in plant seeds (Arabidopsis and
soybean) or secreted from the yeast Pichia pastoris
protected piglets from infection by enterotoxigenic
Escherichia coli when mixed with food [38]. Tailoring the
composition of polysaccharides could fine-tune the
release of natural products or recombinant proteins from
biological capsules for a broader range of delivery sys-
tems or scenarios. For example, different mutations or
combinations thereof can dramatically alter how muci-

laginous polysaccharides are released from Arabidopsis
seeds and their architecture [9]. Heterologous expres-
sion systems such as Pichia yeast cells can not only
provide mechanistic insights into the function of poly-
saccharide synthases and their co-factors [17], but could
also represent biological factories for plant-like materials
and programmable capsules.
Biological factories to build programmable
walls
A major bottleneck in tailoring cell wall polysaccharides
has been the limited pace and capacity to genetically
engineer plants (Box 1). For in vitro studies, the chem-
ical synthesis of oligosaccharides and glycan arrays can
facilitate high-throughput screens of carbohydrate-
www.sciencedirect.com
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Box 1. Prominent questions for programming polysaccharides in cells.

� What organisms or new tools will accelerate plant cell wall bioengineering?
� What are the first strategies that will succeed to enzymatically diversify plant glycans?
� Which glycan changes will modulate (a)biotic stress responses without yield penalties?
� How can plant-inspired cell wall polysaccharides be assembled from the bottom up?
� What infrastructure and standards will facilitate an inclusive community of wall builders?
� How will laboratory findings scale to agricultural and manufacturing environments?
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active enzymes [39]. Nevertheless, many plant glyco-

syltransferases (particularly those with multiple trans-
membrane spans) are challenging to purify in active
forms and have low yields. These current limitations
render in vitro activities of polysaccharide biosynthetic
enzymes more suitable for biochemical studies rather
than for biotechnological applications. Randomly
mutagenized plant populations have been instrumental
to identify cell wall related genes, but this approach can
be difficult to scale even with the advent of mapping
mutations by next-generation sequencing. Instead,
novel plant systems and/or transformation pipelines are

needed to enable parallel engineering of targeted
genome modifications. The bryophytes Physcomitrium
patens and Marchantia polymorpha can be cultivated in
multi-well plates and are great models for cell biology
[40]. They could also facilitate more rapid design, build,
test and learn (DBTL) cycles for cell wall poly-
saccharide engineering in the future. For instance,
Marchantia has a haploid-dominant life cycle, reduced
genetic redundancy, and benefits from a modular toolkit
for genetic manipulations [41].

Microbial hosts are even more amenable to biotech-

nology and can serve as a screening platform before
engineering the most promising targets in model plants
or crops [42]. Recombinant proteins and many eukary-
otic enzymes can be rapidly produced in yeast such as
Pichia cells. For example, chimeric cellulose synthase-
like enzymes for mannan and xyloglucan synthesis can
be modularly assembled using Golden Gate cloning and
evaluated in yeast cells [18]. Several yeast species are
already part of human diets as integral components of
foods (fermented and baked goods) and live probiotics.
As a biotechnological example, Pichia cells are used in

the production of plant-based meat alternatives by
companies such as Impossible Foods [43]. The baker’s
yeast Saccharomyces cerevisae, with even more genetic
resources, was recently shown to engineer multi-step
enzymatic pathways where cellulose synthase-like en-
zymes were unexpectedly found to be responsible for
the transfer of glucuronic acid onto triterpenoid sapo-
nins [44,45], which represent potent sweeteners. The
use of surrogate hosts, which could also include addi-
tional microbial organisms [42], for cell wall bioengi-
neering will also increase the research opportunities
www.sciencedirect.com
available for undergraduate students from a range of

programs including microbiology, engineering, and
biomedical tracks. By lowering the technical barriers and
costs required for students to start experimenting with
cell wall bioengineering, we could enhance the diversity
and inclusion of trainees in plant biology.
Conclusions
In the last eight years, the number of sequences indexed
in the carbohydrate-active enzymes database (CAZy;
http://www.cazy.org/) database has dramatically increased
(e.g. by nearly 9-fold for CBMs) [46]. The CAZy
sequence space that remains to be comprehensively
explored is staggering even for model species such as
Arabidopsis (Figure 2) and well-studied crops as such as
rice [19]. Considering that the acetylation or methyl
esterification patterns of matrix polysaccharides require

the coordinated activities of additional proteins beyond
CAZy families, tailoring glycan structures will greatly
benefit from advanced genetic tools (e.g. high efficiency,
multiplex genome editing), increased accessibility to lab
automation and artificial intelligence. To support this, a
global alliance of biofoundries was recently established to
coordinate the activities of public infrastructures for the
genetic reprograming of organisms [47]. Avenues to start
automating molecular biology will facilitate large-scale
experiments and biomanufacturing [48]. The
decreasing cost of gene synthesis can also be leveraged to
explore the sequence-to-function space of new

carbohydrate-active enzymes, as recently demonstrated
in bacteria [49]. Open access to AlphaFold protein
structure predictions [50] (https://alphafold.ebi.ac.uk/),
along with experimental data for polysaccharide syntha-
ses (e.g. for cellulose synthases [51,52]), will also help to
prioritize natural or engineered enzymes for bench work.
As an alternative to rational design, continuous directed
evolution in yeast has started to be applied for the
improvement of enzymes for plant applications [53]. The
utility of this powerful technique could be expanded
beyond primary metabolism by identifying yeast strains

or cultivation conditions that couple growth to the use or
synthesis of plant polysaccharides. With the development
of powerful tools to simultaneously edit or activate
multiple genes [54], the bioengineering of cell walls will
become faster even in seed plants. An upcoming
Current Opinion in Plant Biology xxxx, xxx:xxx
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6 Plant Biotechnology
bottleneck will likely be the analysis of polysaccharides in
intact cell walls, for which relatively few non-invasive
plant methods have emerged in the last two decades
[34]. Fluorescent probes are available for many but not all
cell wall glycans, so creating advanced molecular labels
can help to visualize complex cell walls and their
biosynthetic machinery [55]. Alternatively, existing
labels such as 2-aminobenzamide (2-AB) can be applied

in new contexts (e.g. flow cytometry) to empower new
experimental approaches in microbial [56] or plant cells.
Finally, the assembly of native plant cell walls can now be
quantified using solid-state nuclear magnetic resonance
(ssNMR; see recent review [57]), providing high-
resolution insights into the molecular interactions and
mobility of specific polysaccharide domains [58].
Therefore, this is the prime moment to “go glyco” and
explore uncharted territories in the world of plant poly-
saccharides and their derivatives (Box 1).
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