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All plant cells are surrounded by complex walls that
play a role in the growth and differentiation of tissues.
Walls provide mechanical integrity and structure to
each cell and represent an interface with neighboring
cells and the environment (Somerville et al., 2004). Cell
walls are composed primarily of multiple polysac-
charides that can be grouped into three major classes:
cellulose, pectins, and hemicelluloses. While cellulose
fibrils are synthesized by the plant cells directly at the
plasmamembrane (PM), thematrix polysaccharides are
produced in the Golgi apparatus by membrane-bound
enzymes from multiple glycosyltransferase families
(Oikawa et al., 2013). After secretion to the wall via
exocytosis, the structures of the noncellulosic polysac-
charides are modified by various apoplastic enzymes.
In addition to polysaccharides, most plant cell walls
contain small amounts of structural proteins such as
extensins and arabinogalactan proteins.

Cell walls are dynamic entities, rather than rigid and
recalcitrant shells, that can be remodeled during plant
development and in response to abiotic and biotic
stresses. Cell expansion requires the deposition of ad-
ditional material in the surrounding primary walls as
well as the reorganization and loosening of existing
polymers to allow for wall relaxation and controlled
expansion (Cosgrove, 2005). The latest model of the
primary wall structure proposes that cellulose-cellulose
junctions only occur at a limited number of biome-
chanical hotspots, where protein catalysts must act se-
lectively to initiate wall loosening (Cosgrove, 2018). In
tissues undergoing growth, the recycling of polysac-
charides via a suite of enzymes can contribute to the
construction of elongating walls (Barnes and Anderson,
2018). Once elongation ceases, some cells deposit thick

secondary walls that incorporate additional polysac-
charides. Many secondary walls are impregnated with
the polyphenol lignin and thereby become relatively
fixed structures that excludewater and resist hydrolysis.

The dynamics of plant cell walls have traditionally
been challenging to characterize in muro due to tech-
nical limitations and the structural complexity of their
components. As an example of structural complexity,
pectins can incorporate 12 different sugars in at least
25 glycosidic linkages and can be decorated further
with methyl, acetyl, or phenolic groups (Atmodjo
et al., 2013). While analyses of extracted carbohydrates
have been instrumental for characterizing walls
(Foster et al., 2010; Pettolino et al., 2012; Carpita and
McCann, 2015), they do not reveal how polysacchar-
ides are distributed across different cell layers or
within a particular wall. Historically, only a few
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techniques were available to detect polysaccharides in
living plant cells, and many of the wall-directed
probes had a broad specificity and/or poorly charac-
terized targets (Wallace and Anderson, 2012). For

instance, the Calcofluor White dye has been used fre-
quently to stain cell walls, but it fluoresces in the
presence of b-glucan structures from all three major
polysaccharide classes (Anderson et al., 2010). Recent

Table I. Comparison of advanced techniques for monitoring polysaccharide dynamics

A summary is provided of technical advantages and limitations, along with key biological observations, which are discussed in the text. For the
electron microscopy column, TEM or SEM indicate points specific to either transmission or scanning electron microscopy, respectively. R denotes the
relative resolution of a technique and ranges from the diffraction limit of light (+) to atomic resolution (+++). S denotes the relative speed of a
technique (including the typical sample preparation time) and ranges from multiple days (+) to mere seconds (+++).

Parameter Light Microscopy Electron Microscopy Atomic Force Microscopy Solid-State NMR X-Ray Diffraction

Advantages Live-cell imaging TEM: mAb-compatible Measurement of
elasticity

Atomic-scale
chemical

information

Highest spatial resolution

Many probes (see
Table II)

Organelle resolution Near-native cell walls Intact tissues

Visualization CESA dynamics SEM: CESA rosette size Pattern of polymers Cellulose-matrix
polymer
location

Cellulose microfibril
dimensionsPolymers across

tissues
TEM: polymers within

a cell
Stiffness of cell wall

Limitations Epitope masking TEM: long preparation Uncertain polymer
identity

Analysis of biomass as
a whole (no cell

specificity)

Works only for crystal
structuresProbe specificity Fixation artifacts

R + ++ ++ +++ +++

S +++ + ++ + +

Figure 1. Major classes of probes and key
steps to image cell wall polysaccharides. A,
Illustration of the steps required prior to mi-
croscopy (represented by the magnifying
glasses) for different types of probes. Second-
ary antibodies (2° mAb) are commercially
available and should be selected based on the
final application (electron versus light mi-
croscopy) and the available equipment (e.g.
fluorescence filters). Probes in colored boxes
are exemplified in B toG. B andC, Sites of wall
polysaccharide synthesis in Arabidopsis coty-
ledons expressing the yellow FP markers
wave_22Y and wave_138Y, respectively
(Geldner et al., 2009). FP signal and chloro-
plast intrinsic fluorescence are shown using
Orange Hot and Cyan Hot look-up tables in
Fiji (Schindelin et al., 2012). D to G, Mucilage
architecture of an S4B-stained and mAb-la-
beled (CCRC-M36 and Alexa Fluor 488 2°
mAb) Arabidopsis seed. D shows a segment of
a whole seed (black) that has been brought
into contact with water. The only clearly visi-
ble structures are columellae (C). S4B staining
reveals cellulosic rays in E, and the antibody
CCRC-M36 shows the deposition of rhamno-
galacturonan in F. The comparison of the
overlay G with D exemplifies the usefulness of
dyes and labels. Bars = 25 mm (B–G).
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technical developments, such as the identification of
more specific probes, have helped elucidate the com-
ponents of the plant cell wall.

In this Update, we focus on current and emerging
techniques for monitoring the dynamics of polysac-
charides in the cell wall (Table I). We highlight recent
biological insights gained from these methods, discuss
the limitations of each approach, andprovide a summary
of specific probes that may be used to identify different
polysaccharide structures in situ (Fig. 1; Table II).

CELLULOSE

Visualization of Crystalline Cellulose Microfibrils

Cellulose microfibrils are aggregates of linear b-1,4-
linked glucan chains, which are stabilized by intramo-
lecular and intermolecular hydrogen bonds in the walls
(Notley et al., 2004; McNamara et al., 2015). Several
types of methods have been used to visualize the mi-
crofibrils in the wall (Table I). Primary wall cellulose
fibrils have been estimated to be 3 nm in diameter by
spectroscopic and diffraction techniques (Thomas et al.,
2013), whereas larger aggregates of microfibrils in the
5- to 10-nm-diameter range have been found in conifer
wood (Fernandes et al., 2011). Even fibrils with diam-
eters up to 40 nmwere observed by electronmicroscopy

utilizing freeze-fracture techniques (McCann et al.,
1990). Currently, it is not clear how much interspersed
matrix polymer material contributes to these aggregate
estimates. Due to this size range, microfibrils can be
observed by both atomic force microscopy and scan-
ning electron microscopy (Zhang et al., 2016), and their
angles and distances can be determined (Marga et al.,
2005). Crystalline cellulose is initially oriented ran-
domly in meristematic cells (McCann et al., 1990) but is
later aligned as parallel fibrils, transverse to the axis of
elongation (Sugimoto et al., 2000). The orientation of
microfibrils is hypothesized to mechanically restrict
the direction of cell extension, leading to anisotropic
growth. Parallel cellulose microfibrils are separated
during cell expansion (Marga et al., 2005), presumably
yielding to internal turgor pressure and being loosened
via the enzymatic modification of adjoining matrix
polysaccharides (Wolf and Greiner, 2012; Cosgrove,
2016). Since microfibril diameters do not appear to de-
crease during the elongation process, the fibrils likely
are not modified directly.

Monitoring Cellulose Structure with Molecular Probes

In addition to cellulose found in a crystalline micro-
fibril form, some walls are estimated to be composed of

Table II. Selected probes to investigate the dynamics of different plant wall polysaccharides

Additional antibodies with known targets that are not listed here are available from PlantProbes (http://plantprobes.net) and CarboSource (https://
www.ccrc.uga.edu/;carbosource/CSS_home.html). CBMs, Carbohydrate-binding modules; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid; mAb,
monoclonal antibody.

Polysaccharide Probe Target Reference

Cellulose Calcofluor White Various b-glucan structures Anderson et al. (2010)
Pontamine Scarlet 4B (S4B) Specific for crystalline cellulose Anderson et al. (2010)
FP-tagged CESA proteins Proxy for cellulose synthesis Paredez et al. (2006)

CBM3a Crystalline cellulose Blake et al. (2006)
CBM28 Amorphous cellulose Blake et al. (2006)

Pectin Ruthenium Red (RR) Pectin with deesterified GalA Hanke and Northcote (1975)
LM19 mAb HG, particularly deesterified forms Verhertbruggen et al. (2009)
2F4 mAb Unesterified HG cross-linked by Ca2+ Liners and Van Cutsem (1992)
LM20 mAb Methylesterified HG Verhertbruggen et al. (2009)
JIM7 mAb Methylesterified epitopes of HG Knox et al. (1990)

CCRC-M36 mAb RG I backbone Ruprecht et al. (2017)
Chitosan oligosaccharides (COS) Deesterified GalA regions Mravec et al. (2014)

Oligogalacturonides Unesterified HG cross-linked by Ca2+ Mravec et al. (2017)
Propidium iodide (PI) Unesterified GalA units Rounds et al. (2011)

Alkyne derivative of Fuc RG I Anderson et al. (2012)
Azido derivative of Kdo RG II Dumont et al. (2016)

Xyloglucan Sulforhodamine labeling Xyloglucan oligosaccharides Vissenberg et al. (2005)
CCRC-M1 mAb FucogalatoXyG Puhlmann et al. (1994)

Mannan LM21 mAb Branched and unbrached mannans Marcus et al. (2010))
LM22 mAb Unbranched mannans Marcus et al. (2010)

Xylan CBM15-mOrange2 (OC15) Xylan (xylohexaose) Khatri et al. (2016)
LM10 mAb Unbranched xylan McCartney et al. (2005)
LM11 mAb Branched xylan (e.g. with arabinose) McCartney et al. (2005)
LM28 mAb Glucuronosyl-substituted xylans Cornuault et al. (2015)
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;40% amorphous cellulose (Marga et al., 2005). This
substantial proportion of cellulose cannot be deter-
mined by the aforementionedmicroscopy tools and can
only be estimated roughly by spectroscopic methods.
CBMs are powerful probes for detecting the presence
and dynamics of amorphous cellulose (McLean et al.,
2002). CBMs are noncatalytic domains of carbohydrate-
active enzymes and are thought to facilitate binding to
specific substrates (Hall et al., 1995). Multiple cellulose-
directed CBMs have been identified that bind either
crystalline or amorphous structures (Table II; McLean
et al., 2002). Indirect immunolabeling of plant sections
with His-tagged versions of these CBMs (for a detailed
mechanism, see Fig. 1A) has revealed the diversity of
cellulose forms in various cell walls using fluorescence
microscopy (Blake et al., 2006) or electron microscopy
(Ruel et al., 2012). For example, collenchyma cells
contain primary walls with a larger abundance of
amorphous cellulose compared with microfibril-rich
secondary walls. CBMs also provided hints about pol-
ymer interactions, as partial enzymatic removal of
pectic polysaccharides in plant sections leads to a more
intensive labeling of crystalline cellulose. This indicates
a close spatial proximity of these two polymer classes
(Blake et al., 2006) and has been demonstrated inde-
pendently by solid-state NMR (Dick-Perez et al., 2012).
However, certain probes may have broader specificities
than expected. For instance, CBM3a is a common label
for crystalline cellulose that also can bind xyloglucan
(XyG), a Xyl-substituted glucan (Hernandez-Gomez

et al., 2015). This issue could be mitigated by imaging
walls before and after treatment with xyloglucanase or
by using alternative probes (Table II).

Fluorescent proteins (FPs) can be tagged to CBM
domains to directly analyze polysaccharide structure
without the secondary or tertiary reagents shown in
Figure 1A. For instance, two fluorescently tagged CBMs
enabled the dual labeling of crystalline and amorphous
cellulose at the surface of plant fibers following biomass
deconstruction (Gourlay et al., 2015). Such chimeric
protein constructs could potentially be transformed
into plants to monitor polysaccharides without any
incubation steps.While in vivo fluorescent CBM probes
may provide greater insights into polysaccharide
dynamics in growing cells, caution is necessary. For
example, the direct expression of fluorescent CBM
proteins in plants would have to be tested carefully and
optimized to ensure that the target polymer is visual-
ized without altering its native architecture or plant
development. Another potential disadvantage is that
the FP domain may interfere with the ligand-binding
site of the CBM (Knox, 2012). Regardless of the pres-
ence of FP tags, binding of a CBM or any other
polysaccharide-directed mAbs provides limited quan-
titative information; an epitope may be found in mul-
tiple polymers, or it could bemasked by its neighbors or
hidden by an altered conformation of the target poly-
saccharide (Pattathil et al., 2015). Despite these issues,
proteinaceous probes such as CBMs provide an un-
precedented view of the occurrence of wall polysac-
charides. Alternatively, crystalline cellulose in living
cells can be fluorescently stained with S4B (Fig. 1E;
Table II; available as Direct Red 23) to monitor micro-
fibril reorientation in real time (Anderson et al., 2010).
In contrast to Calcofluor White, S4B is highly specific to
cellulose.

Cellulose microfibrils are generated at the PM (Fig.
1C) by rosette structures harboring complexes of mul-
tiple cellulose synthase (CESA) enzymes and other
proteinaceous components (Hill et al., 2014; McFarlane
et al., 2014). It is believed that the synthesis of glucan
chains by the CESAs propels the complex through
the PM, depositing cellulose microfibrils in its wake
(McFarlane et al., 2014). The estimated size of cellulose
microfibrils suggests that they are produced by CESA
rosettes containing a total of 18 CESA proteins, which
was validated in themoss Physcomitrella patens using an
improvedmethod for electronmicroscopy (Nixon et al.,
2016). FP-tagged CESA enzymes also have been visu-
alized in the PM of living cells from the model plant
Arabidopsis (Arabidopsis thaliana; Paredez et al., 2006).
Their movement has been used as a powerful proxy to
assess the speed and orientation of microfibril forma-
tion in planta. By this technique, the synthesis of cel-
lulose in secondary walls has been estimated to be
significantly faster than in primarywalls (Paredez et al.,
2006; Wightman et al., 2009; Watanabe et al., 2015).
Since specific elements of the cytoskeleton also can be
visualized with mAbs or FP probes, numerous elegant
studies have shown that the direction of cellulose

OOUTSTANDING QUESTIONS 

• What relationships between morphological 

development and wall dynamics will be 

unraveled by applying the state-of-the-art 

imaging approaches in different biological 

contexts? 

• How do polysaccharide structures visualized 

with specific techniques and probes influence 

cell wall architecture and properties? 

• How does a cell decide to allocate carbon for the 

synthesis of a particular wall polymer? 

• Which probes can label structurally defined 

motifs of individual polysaccharides, as well as 

of polymer complexes that occur in the plant 

cell wall? 

• How do polysaccharides from different classes 

interact in the wall and how does their interplay 

affect polymer synthesis and assembly? 

• What technical developments will overcome the 

current spatiotemporal limits for the in vivo 

monitoring of polysaccharide dynamics during 
cell elongation and differentiation? 
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deposition is coupled to microtubule orientation
(McFarlane et al., 2014).

Fluorescently labeled CESAs are localized not only in
the PM but also in intracellular compartments such as
the Golgi apparatus and other small bodies (Crowell
et al., 2009). These could represent proteins that are in
transit through the secretory system: from the endo-
plasmic reticulum, where they are synthesized, to the
outer membrane of the cell. Alternatively, the intracel-
lular CESA-containing compartments could be the re-
sult of endocytosis, presumably for protein recycling
purposes, or are destined to be reinserted into the PM
under specific conditions, such as salt stress (Gutierrez
et al., 2009). Therefore, endomembrane trafficking is
likely a key regulator of when and where cellulose can
be generated at the cell surface. This also highlights the
major limitation of FP probes as a proxy for assessing
cellulose microfibril orientation, direction, and synthe-
sis. Even though CESAs can be observed in real time, it
is not certain when the proteins are actually producing
cellulose. This may be overcome by monitoring cellu-
lose deposition with several probes, ideally at the same
time. A combined analysis of FP-CESA localization,
CBM3a immunolabeling, and S4B staining in Arabi-
dopsis roots revealed that cellulose is deposited at the
cell plate earlier than was thought previously (Miart
et al., 2014). Surprisingly, FP-tagged CESAs are not
localized at the tip of elongating root hairs, where S4B
and CBM3a signals are detected (Park et al., 2011).
Hence, other proteins are likely to be responsible for the
formation of these b-glucans (Park et al., 2011), and new
probes are needed to further characterize their struc-
tures and to identify how they are produced.

MATRIX POLYSACCHARIDES

In contrast to the simple, linear cellulose polymers,
matrix polysaccharides (such as pectins and hemicel-
luloses) can be branched and substituted and are
thought to be synthesized in the Golgi (Fig. 1B). Once
secreted to the wall, matrix polysaccharides are struc-
turally modified by various apoplastic enzymes,
including glycosyl hydrolases and carbohydrate
esterases.

Pectins are structurally complex polysaccharides that
are rich in a-1,4-linked GalA subunits (Atmodjo et al.,
2013), such as homogalacturonan (HG), rhamnoga-
lacturonan I (RG I) and RG II, and xylogalacturonan.
Hemicellulose encompasses matrix polysaccharides
that can be extracted using only alkali as a chaotropic
agent (Scheller and Ulvskov, 2010) and, thus, includes
XyG, xylans, mannans, and mixed-linkage glucans. In
contrast to the current dogma for hemicellulose bio-
synthesis in the Golgi, mAbs and FP probes indicate
that mixed-linkage glucans are assembled at the PM
(Wilson et al., 2015). Therefore, the production ofmatrix
polysaccharides and their subsequent remodeling in
the wall are only starting to be understood. The mo-
lecular architecture of matrix polysaccharides has been

revealed by the development of enhanced methods
(Table I) and the identification of probes with specific
target epitopes (Table II).

Monitoring Pectic Structures

HG is the most abundant pectin in primary walls and
can be modified in planta via methylesterification and
acetylation. Two other major pectic domains, RG I and
RG II, contain Rha and are covalently linked by HG
(Atmodjo et al., 2013). The Arabidopsis genome con-
tains more than 170 HG-related enzymes (Sénéchal
et al., 2014), although the precise roles of only a few
have been characterized to date. HG methylester-
ification status plays important roles in various devel-
opmental processes and is controlled tightly by pectin
methylesterases (PMEs), PME inhibitors (PMEIs),
subtilisin-type Ser proteases (SBTs), and at least one E3
ubiquitin ligase (Levesque-Tremblay et al., 2015). Mu-
tants with altered expression of these players have been
characterized using mAbs directed against HG do-
mains with different degrees of methylesterification.
Some mAbs (e.g. LM19 and 2F4; Table II) preferentially
bind unesterified or sparsely methylated HG, whereas
other mAbs (e.g. LM20 and JIM7; Table II) recognize
methylesterified pectin. Utilizing these probes has been
instrumental in observing the state of HG methyl-
esterification in cell walls. Immunolabeling coupled
with transmission electron microscopy revealed that
HG is synthesized in the plant Golgi apparatus in a
highly methylesterified state labeled by JIM7, whereas
unesterified GalA epitopes are barely detected without
chemical deesterification (Zhang and Staehelin, 1992).
After deposition in the wall, pectin can be deesterified
by PMEs in a specific spatiotemporal manner that
results in one of two contrasting roles (Levesque-
Tremblay et al., 2015). Regions of unesterified GalA
residues can be cross-linked via Ca2+ ions (forming egg
boxes) to increase wall stiffness or cleaved by pectin-
degrading enzymes (e.g. polygalacturonases) to pro-
mote wall loosening.

The impact of HG methylesterification on cell wall
architecture can be examined conveniently in the muci-
lage capsules that coat Arabidopsis seeds (Fig. 1, D–G).
This specialized cell wall containsmore than 90% pectin
and only minor amounts of cellulose and hemicellulose
(Voiniciuc et al., 2015b). Thick, hydrophilic capsules of
mucilage can be immunolabeled indirectly with the
CCRC-M36 mAb (Fig. 1F; Table II) or visualized
quickly with RR (Table II), a dye that selectively binds
to negatively charged molecules such as unesterified
GalA regions and is compatible with both light and
electron microscopy (Hanke and Northcote, 1975). The
RR dye was a convenient probe for identifying chemi-
cally mutagenized Arabidopsis mucilage-modified mu-
tants (Western et al., 2001) and a large number of
natural Arabidopsis variants with altered mucilage ar-
chitecture (Voiniciuc et al., 2016). Thepresence ofCa2+ ions,
which can be manipulated by distinct chemical treat-
ments, negatively regulates the size of RR-stained
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mucilage capsules. For instance, flying saucer1 (fly1)
mutant seeds release smaller RR-stained mucilage
capsules when hydrated inwater, due to a lower degree
of pectin methylesterification and an increased abun-
dance of HG egg boxes detected with the 2F4 mAb
(Voiniciuc et al., 2013). The exogenous addition of Ca2+

ions further blocks the ability of fly1 mucilage to ex-
pand, consistent with the model that unesterified HG
regions can form stiff gels. In stark contrast, the im-
paired wall architecture of the fly1 mutant was largely
rescued by treating seeds with cation chelators
(Voiniciuc et al., 2013) that disrupt the Ca2+ cross-links
between unesterified HG chains to facilitate the loos-
ening of matrix polysaccharides. Similar calcium-
dependent phenotypes, consistent with the HG egg-box
model, have been observed for two additional mucilage
mutants involved in HG methylation status: sbt1.7
(Rautengarten et al., 2008) and pmei6 (Saez-Aguayo
et al., 2013). While FLY1 regulates the HG methyl-
esterification status via protein ubiquitination in the
endomembrane system, SBT1.7 and PMEI6 inhibit PME
activity directly in the extracellular matrix where HG is
present.
Nevertheless, a new model for the role of HG in cell

expansion postulates that Ca2+-bridged pectins are not
as prevalent in planta as was thought previously (Hocq
et al., 2017). The frequency of HG egg boxes in cell walls
may have been overestimated by certain immunolab-
eling procedures, highlighting the need to still apply
caution when using these powerful tools. For instance,
2F4 immunolabeling of egg-box cross-links requires the
addition of Ca2+ ions (Liners and Van Cutsem, 1992) at
concentrations that are severalfold greater than physi-
ological levels (Hocq et al., 2017). Therefore, the effects
of HG demethylesterification on cell walls also should
be monitored with other techniques. Atomic force
microscopy (Table I) has been used to quantify the
elasticity of walls in living meristems of Arabidopsis
wild-type plants as well as in transgenic lines over-
expressing a PME gene or an antagonistic PMEI gene
(Peaucelle et al., 2011). While the egg-box model pre-
dicts that PME activity increases the stiffness of the
pectic matrix, the atomic force microscopy experi-
ments found that demethylesterification of HG pro-
moted wall loosening and was a prerequisite for organ
initiation (Peaucelle et al., 2011). Therefore, unesterified
HG in growing cells is likely targeted by pectin-
cleaving enzymes such as the recently identified
polygalacturonanses involved in cell expansion
(PGX1, PGX2, and PGX3), which are required for the
development of multiple Arabidopsis organs (Xiao
et al., 2014, 2017; Rui et al., 2017).
While the HG structure is typically visualized using

mAbs, these relatively large probes may have limited
permeability and require multiple incubation steps that
render them unsuitable for real-time imaging of pectin
dynamics (Fig. 1A). Probes with considerably smaller
Mr values have emerged recently for monitoring HG
properties. PI is a membrane-impermeable stain that
competes with Ca2+ ions to bind to demethylesterified

pectins. When used at low concentrations, PI enables
imaging in Arabidopsis root hairs and pollen tubes
without altering cell growth (Rounds et al., 2011).
Mutant pollen tubes with impaired exocytosis show
repetitive bursts of growing tips at cell wall regions that
accumulate PI-stained demethylesterified HG (Synek
et al., 2017). Alternatively, sparsely methylated HG can
be labeled in real time with fluorescently tagged COS
(Table II), and the specificity of this labeling was tested
using carbohydrate microarrays (Mravec et al., 2014).
Sequential use of COS probes coupled to two distinct
fluorophores revealed how cells in Arabidopsis root
caps accumulate deesterified HG over time. Recently,
another oligosaccharide probe consisting only of GalA
units was used to continuouslymonitor the distribution
of calcium-cross-linked HG in elongating pollen tubes
(Mravec et al., 2017). Throughout pollen tube growth,
tightly linked HG was only detected outside of the tip-
growing region, consistent with the polar localization
of PMEI proteins (Röckel et al., 2008). Both PI and the
oligosaccharide probes can label HG in less than 20 min
to provide an unprecedented resolution of HG dy-
namics in living cells. Recently, HG dynamics were
visualized using COS conjugated with Alexa Fluor
488 (COS488) and PI probes in guard cells lacking or
overexpressing the PGX3 polygalacturonase (Rui et al.,
2017). Although COS488 and PI labeled only partially
overlapping regions of thewall, they both supported an
inverse relationship between the presence of PGX3 and
unesterified HG. Additionally, COS488 and PI were
more sensitive for quantifying GalA epitopes in three
dimensions, compared with indirect labeling of fixed
cells withmAbs (LM19, LM20, and 2F4; Rui et al., 2017).
Therefore, these newprobes are compelling alternatives
to mAbs and should be exploited further.

Following the use of click chemistry to image poly-
mers in animals, fungi, and bacteria, modified sugars
can be metabolically incorporated into plant cell walls
to visualize pectin dynamics (Anderson and Wallace,
2012). Although Fuc is part of several wall components,
Arabidopsis roots were shown to primarily incorpo-
rate an alkynylated Fuc analog into a high-molecular-
weight pectic polymer that is most likely RG I
(Anderson et al., 2012). Since the alkynylated Fuc
analog sugar can be fluorescently labeled with a
membrane-impermeable compound (Fig. 1A), it can be
used to identify proteins required to maintain the de-
livery of pectin to the cell wall. This probe showed that
elongating root epidermal cells lacking the FRAGILE
FIBER1 kinesin incorporate less RG I and in an uneven
pattern compared with the wild type (Zhu et al., 2015).
In addition, the synthesis and redistribution of another
pectic polymer can now be visualized using a clickable
analog of Kdo, a monosaccharide unique to RG II
(Dumont et al., 2016). The Kdo-derived probe is com-
patible with other probes (e.g. the alkynylated Fuc
analog) to simultaneously image multiple matrix poly-
saccharides during root growth. The RG I and RG II
probes have been detected via copper-catalyzed click
reactions, which are toxic to Arabidopsis seedlings and
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may damage the wall. However, two alternative
methods to detect click-compatible analogs not requir-
ing copper were developed recently and could be used
to study the long-termdynamics of extracellular glycans
(Hoogenboom et al., 2016).

Hemicellulose Dynamics in the Primary Cell Wall

XyG is a ubiquitous matrix polysaccharide in land
plants and represents the most abundant hemicellulose
in the primary wall (Pauly and Keegstra, 2016). Since
XyG cross-links cellulose microfibrils, it was thought
that this network forms the major load-bearing struc-
ture in growing cells and that its metabolism plays a
major role in cell expansion. However, the Arabidopsis
xxt1 xxt2 mutant lacking detectable XyG displays only
minor morphological changes and vegetative growth
defects (Cavalier et al., 2008). These observations
question the role of XyG in extension growth. Never-
theless, xxt1 xxt2 mutant plants exhibit burst root hairs
(Cavalier et al., 2008), indicating that XyG plays an
important role in tip growth.

The side chain substitution pattern of XyG can vary
depending on the plant species (Schultink et al., 2014).
However, recent analyses revealed that XyG struc-
tures can be tissue specific (Lampugnani et al., 2013;
Dardelle et al., 2015; Liu et al., 2015). Based on
chemical analyses of ground plant tissue samples,
fucogalactoXyG is generally found in many eudicots,
but not in plant vegetative tissues from phylogeneti-
cally younger species of the Solanaceae and the
grasses (Poaceae). An alternative approach to identify
fucogalactoXyG at the cellular level is the use of
the mAb CCRC-M1 (Table II), which was the first
wall-directed mAb with a thoroughly characterized
epitope specificity (Puhlmann et al., 1994). Fucoga-
lactoXyG labeled by CCRC-M1 has been visualized in
specialized tissues in the grasses (Brennan and Harris,
2011), in the pollen tubes of tomato (Solanum lyco-
persicum; Dardelle et al., 2015) and Nicotiana alata
(Lampugnani et al., 2013), and in root hairs of rice
(Oryza sativa; Liu et al., 2015). The presence of this
particular form of XyG in tip-growing tissues suggests
that its structure and/ormetabolism are important for
tip growth or at the interface between the plant and
the environment.

Recently, the role of XyG in stomatal guard cell
function was examined through live-cell spinning-disk
confocal microscopy of xxt1 xxt2mutant cell walls (Rui
andAnderson, 2016). XyG-deficient guard cell walls are
less capable of longitudinal expansion during stomatal
movement and show impaired organization of S4B-
stained cellulose. Mutants containing point mutations
in CESA genes show similar defects as well as aberrant
distribution of GFP-tagged CESA proteins during sto-
matal movements (Rui and Anderson, 2016). While
the cellulose structure was visualized with two dis-
tinct tools (S4B dye and FP-CESA), the dynamics of
XyG polymers as stomata open and close have yet to be
investigated.

The development of specific probes compatible with
live-cell microscopy is essential for monitoring the
structure of XyG in dynamic contexts, such as stomatal
movements. Sulforhodamine-labeled XyG oligosac-
charides have been used to visualize XyG transgluco-
sylase/hydrolase enzymes that act specifically in
elongating walls of root epidermal cells in Arabidopsis
and tobacco (Nicotiana tabacum) root epidermal cells
(Vissenberg et al., 2005). Since fluorescently labeled
XyG was incorporated into the cell wall, this approach
could be applied in other biological contexts. In addi-
tion, multiple azido or alkynyl sugar analogs of Glc and
Xyl have been synthesized as potential reporters for
XyG (Zhu et al., 2016), but none of them were meta-
bolically incorporated into Arabidopsis roots. Al-
though another study found a Glc derivative (6dAG)
that is incorporated specifically at root hair tips, this
probe colocalizes with callose, inhibits root growth, and
leads to stunted root hairs (McClosky et al., 2016).
Therefore, no suitable clickable analogs are available
currently to label hemicelluloses. Even though most of
the wall Fuc is present in fucogalactoXyG (Zablackis
et al., 1996), an alkynylated Fuc analog only labeled RG
I (Anderson et al., 2012). Apparently, the corresponding
XyG:fucosyltransferase is not able to accept the Fuc
analog as a donor substrate (Perrin et al., 1999; Rocha
et al., 2016), while the RG I:fucosyltransferase does.
These experiments highlight one of the current limita-
tions of using click chemistry or other sugar analogs to
monitor wall dynamics. Hopefully, future research
with different sugar analogs will overcome the exclu-
sion from wall polymer metabolic enzymes.

Xylan Dynamics in Secondary Cell Walls

Xylans and mannans are the two major classes of
hemicelluloses that accumulate in plant secondary
walls (Scheller and Ulvskov, 2010) and have backbones
composed primarily of Xyl and Man, respectively.
The dynamics of mannan have yet to be explored in
great detail, although new insights into their structural
roles were gained in recent years (Yu et al., 2014;
Voiniciuc et al., 2015a). Some mAb probes are available
(e.g. LM21 and LM22; Table II), but they cannot bind
acetylated forms of mannan and are not sensitive to the
presence of Glc in the polymer backbone (Marcus et al.,
2010), which varies in nature. A major limitation of
these proteinaceous probes is that their access to target
epitopes can be heavily masked by pectic HG (Marcus
et al., 2010). Although the masking HG could be
enzymatically removed prior to immunolabeling, it
would be advantageous to develop probes that sur-
mount these challenges.

In the last 2 years, important tools for studying xy-
lan dynamics have been developed. The de novo
synthesis of various oligosaccharides has enabled the
characterization of xylan-directed mAbs (Schmidt
et al., 2015). While microarrays with plant polysac-
charides (Moller et al., 2008) or oligosaccharides
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(Pedersen et al., 2012) have been probed previously
with mAbs (Pattathil et al., 2010), arrays of synthetic
glycans have an exceptional purity and facilitate the
precise mapping of the epitopes recognized by mo-
lecular probes. A comprehensive screen of 209 wall-
directed mAbs against 88 synthetic glycans, including
22 xylan oligosaccharides, identified specific epitopes
for 78 probes that were uncharacterized previously
(Ruprecht et al., 2017). This study also confirmed the
epitopes of a few mAbs that were already character-
ized in detail (Table II), such as the specificity of LM28
for xylan substituted with GlcA (Cornuault et al.,
2015). Since neither synthetic glycans nor specific
mAbs are available currently for acetylated xylan
(Ruprecht et al., 2017), the current toolbox must be
expanded to detect the full diversity of hemicellulose
structures found in nature. For instance, xylans also
can be imaged directly using CBMs. FP-tagged CBM15
(named OC15; Table II) was developed as a sensitive
probe for monitoring xylan polymers during ligno-
cellulosic biomass conversion (Khatri et al., 2016) but
also could be used in planta.
To overcome the limitation of probes and to gain

greater insight into polymer interactions, solid-state
NMR has emerged as a powerful technique to monitor
themolecular architecture of the plant cell wall. Xylans
were found to have a flattened conformation and were
bound closely to cellulose microfibrils in wild-type
Arabidopsis stems but not in a cellulose-deficient
mutant (Simmons et al., 2016). Moreover, solid-state
NMR revealed that an even pattern of substitution is
essential for xylan to bind to cellulose in the 2-fold
screw conformation (Grantham et al., 2017). The role
of these regular motifs also is supported by mass
spectrometric sequencing and molecular dynamics
simulations of xylan oligomers (Martínez-Abad et al.,
2017). The substitution of xylans also can be observed
using matrix-assisted laser-desorption ionization
(MALDI) mass spectrometry imaging, an emerging
technique that employs specific glycosyl hydrolases to
map variations in polysaccharide localization and
structure. So far, this promising method was used
only to track the composition and distribution of ara-
binoxylan and mixed-linkage glucans during endo-
spermmaturation inwheat (Triticum aestivum; Veli�ckovi�c
et al., 2014). However, MALDI mass spectrometry
can detect all major classes of cell wall polysacchar-
ides (Westphal et al., 2010) and was used successfully
to screen for Arabidopsis axy mutants with altered
XyG structures (Gille et al., 2011; Günl et al., 2011a,
2011b; Günl and Pauly, 2011; Schultink et al., 2015).
Hence, MALDI when coupled with microscopy of-
fers the possibility to (1) enhance the chemical wall
structural resolution down to the cellular level and
(2) image the dynamics of multiple polysaccharides
in situ. This will be particularly advantageous for
detecting wall polymers (e.g. acetylated hemicellu-
loses) that cannot be detected currently with existing
probes (Table II).

CONCLUDING REMARKS

Advanced techniques to monitor polysaccharides
(Table I), alongwith the genomics era of the last decade,
have delivered an avalanche of new data pertaining to
the mechanisms of plant cell wall synthesis and me-
tabolism. Many genes involved in these processes have
now been characterized. However, the spatiotemporal
organization and regulation of wall polymer synthesis
and degradation, the assembly of polymer networks,
and the dynamics of wall assemblies during cell growth
and differentiation remain a challenge (seeOutstanding
Questions box). The identification and characterization
of novel polysaccharide-specific probes, coupled with
sensitive techniques, will shed light on these unre-
solved issues. Even classic probes (e.g. S4B and
FP-tagged proteins; Table II) can be visualized with
increased precision by clearing plant tissues using new
techniques that forgo costly and time-consuming em-
bedding and sectioning steps (Ursache et al., 2018).
Although the resolution of confocal microscopes was
limited historically by diffraction to greater than 200 nm
(Hell, 2007), this barrier has been surpassed in the
last decade to enable the imaging of living plant cells
at the nanoscale level (Komis et al., 2018). With the
advent of superresolution fluorescence microscopy,
polysaccharide-binding probes such as S4B can poten-
tially be visualized in the walls of living plant cells at a
resolution approaching more invasive methods such
as atomic force microscopy and electron microscopy
(Table I; Liesche et al., 2013). Indeed, novel membrane
probes can now reveal the dynamics of organelles at a
spatial resolution of 50 nm, and over tens of minutes
instead of tens of seconds for FP-tagged probes
(Takakura et al., 2017). Label-free in situ imaging of plant
cell wall polysaccharides would be ideal and could be
facilitated by further developments in techniques such as
MALDI mass spectrometry imaging. Other components
of the wall not covered in this Update, such as lignin and
structural proteins, could or have already been moni-
tored using similar techniques. Therefore, there has
never been a better time to explore the dynamics of a
diverse range of plant cell wall polymers.
Received December 14, 2017; accepted February 7, 2018; published February 27,
2018.
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